

Summary

Weld Group is used to calculate the maximum resistance of a weld group and determine the smallest weld size that can be used to resist an in-plane force with arbitrary orientation.

6 1 M	🗒 🗒	Help			Weld George Deviger Devident Ticesse 🛛 🚽 🗸	
Line Par	alei Arde	Polygon Channel	Orde Becangle	, N (A Decision of the second secon	
Analysis type: Wild mean of Allin Protect metal to the Protect metal to the Protect metal to the Protect metal to the Herbitania Neero Witted Neero Decay: Calle	nda storegå inde storegå inde storegå ist presiden 255.9 273 273	Secretar 4004	50 (2000)			
					0 <u>2.0</u> 4.0 1.0 3.0 5.0 kN/mm	

What makes this module special?

- Evaluate current weld group
- Optimise weld group for economic design
- Linear and non-linear stress analysis
- Detailed Equations

Detailed Description

Weld Group is used to evaluate the capacity of a group of welds subject to an eccentric in-plane force. Any shape of weld can be defined by coordinates in the input table. For the analysis, there is a choice between linear and non-linear. The former assumes that the group's centre of rotation coincides with the centroid of the group, while the latter uses the more accurate instantaneous centre of rotation method. A graphic of the stress distribution is displayed both evaluation and optimisation designs.

WELD GROUP Eccentric weld group DESIGN | S16

	h		Weld Group Design	- Developer License — 🗆 🗙
File Input Design (alcsheet Help			
	Entered weld	Designed weld		
Size	(mm) 6	4		
Weld group capacity	(kN) 255	170		
Applied load	(kN) 170	170		
courses is or capacity	0007	10000	Entered weld group	Designed weld group
			0 <u>20 4.0</u> 1.0 3.0 5.0 kN/mm	

Supported Design Codes

SANS 10162-1:2011

Design Codes					
• • • • • • • • • • • • • • • • • • •	AISC - 1999 LRFD AISC 360-16 ASD AISC 360-16 LRFD AS4100 - 1998 AS4100:2020 BS 5950 - 1990 BS 5950 - 2000 CAN/CSA-S16.1-94 CSA S16-01 2001 Eurocode 3 - 2005 NZS 3404 - 1997 SABS 0162 - 1984 SABS 0162 - 1993 SANS 10162 - 2005 SANS 10162-1:2011				

